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Abstract
We consider the effect of the Rashba spin–orbital interaction and space charge in
a ferromagnet–insulator/semiconductor/insulator–ferromagnet junction where
the spin current is severely affected by the doping, band structure and charge
screening in the semiconductor. In the diffusion region, if the resistance
of the tunnelling barriers is comparable to the semiconductor resistance, the
magnetoresistance of this junction can be greatly enhanced under appropriate
doping by the co-ordination between the Rashba effect and the screened
Coulomb interaction in non-equilibrium transport processes within the Hartree
approximation.

1. Introduction

Spintronics is interesting since it involves the exploration of the extra degrees of freedom
provided by electron spin, in addition to those due to electron charge, which is believed to
be very useful in manipulating future electronic devices [1]. To realize such a spin device,
the Rashba spin–orbit interaction is often considered [2]. Since this is caused by structural
inversion asymmetry in quantum wells, it can be artificially controlled by adjusting the applied
gate voltages and specifically designing the heterostructure [3].

On the other hand, one of the current focuses in spintronics lies in injecting spin polarized
electrons into non-magnetic semiconductors [4–10]. This is partially motivated by the high
magnetoresistance observed in ferromagnet tunnel junctions [11]. However, in the diffusion
region and at room temperature, experiments have so far observed a small magnetoresistance
ratio of 1% [12, 13] in ferromagnet/semiconductor/ferromagnet structures. Rashba proposed
a ferromagnetic metal/tunnelling-insulator/semiconductor (FIS) junction to improve the spin
injection rate [14]. Many different geometries of the tunnelling junction are discussed in [15].
It is possible to increase the magnetoresistance to almost 10% using a very large electric
field [16].
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The effect of the Rashba spin–orbital interaction on spin injection has recently become
an interesting research issue. The additional quantum interference effect between two spin
components due to Rashba coupling has been studied in the quantum coherence region and
the difference in conductance dependent on the junction length between parallel and anti-
parallel magnetic configurations has been pointed out [9]. Since the electron spin s is no
longer a good quantum number when Rashba spin–orbital coupling becomes important, the
spin–orbital-induced spin accumulation and the conditions for its observability have been a
matter of controversy even in the diffusion region [17, 18]. Inoue et al [18] dealt with the
spin accumulation and the conductivity tensor on an equal footing from a microscopic point
of view. They found that the electron density of states is enhanced by the spin accumulation
induced by Rashba spin–orbital coupling. However, it is easy to check that, even if the sample
quantity can be improved such that the electron density may be as low as 109 cm−2 in InAs,
this correction to the conductivity is only about 1%. We shall neglect this spin accumulation
effect to the conductivity due to Rashba precession in the present work. Besides the quadratic
correction to the conductivity, Inoue et al [18] also mentioned the possible influence of the
Rashba effect on spin transport within the two-dimensional electron gas for a F/S/F junction
in the diffusion regime. Further careful analysis is required but this is beyond the goal of this
present work. The increase in the density of states affects not only the conductivity but also
many physical observables. In this work, we shall concentrate on the effect of such an increase
on the screened Coulomb interaction and then the magnetoresistance of a double FIS junction.

In recent work [19], we investigated the space charge effect in the non-equilibrium
transport process within the Hartree approximation and found that the magnetoresistance of a
double FIS junction could be greatly increased if one carefully adjusts the parameters of the
junction, such as the charge screening length and the size of the semiconductor. The space
charge effect in the non-equilibrium transport process was first found to play an important
role in the characteristics of the ferromagnetic/non-magnetic/ferromagnetic metal junction
device [20]. Under steady state non-equilibrium conditions, a magnetization dipole layer
much larger than the charge dipole layer is induced at the interface while the magnetization
dipole layer is zero under equilibrium conditions. We have applied this idea to the double FIS
junction [19].

We now ask the question: how do co-ordinations between the Rashba spin–orbital
interaction and the space charge affect spin transport in the double FIS junction? It was
known that the Coulomb interaction may enhance the Rashba effect. In a one-dimensional
Luttinger liquid formalism, Haüsler has reported an enhancement of the Rashba effect due
to spin charge separation [21]. Such an enhancement was also found in a two-dimensional
electron gas system [22].

In this work, we would like to investigate the co-ordination between the Rashba spin–
orbital interaction (due to this increase in the density of states) and the space charge effect in the
double FIS junction in the non-equilibrium transport process. We focus on the diffusion region,
i.e. the junction length is much longer than the mean free path of the electron. To completely
solve the non-equilibrium problem with interactions is highly non-trivial. It requires solving
self-consistently a Boltzmann-type spin transport equation with the Poisson equation. What
we want to describe in this work is using a simple Hartree approximation to check if the effect
coming from these interactions is significant. Consequently, it is found that if (i) the resistance
of the tunnelling barrier is comparable to the semiconductor resistance and (ii) the n-type
semiconductor has an appropriate doping, then while the magnetoresistance of the junction is
greatly enhanced as the charge screening length becomes shorter, as we have already shown
in [19], it is increased as the Rashba spin–orbital coupling increases. This increase is marked if
the electron density in the sample reaches ∼109 cm−2. The shorter the charge screening length
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is, the more the gain in the magnetoresistance comes from the Rashba term. Comparing with
the non-interacting model, we see a large part of the increase in the magnetoresistance comes
from the co-ordination between the Rashba spin–orbital interaction and the space charge effect.

2. Rashba spin–orbital coupling

We consider a two-dimensional electron gas in a narrow gap quantum well, such as those
based on InAs. The spin–orbital coupling in this kind of system is dominated by the Rashba
term [23]:

Hso = α(σx py − σy px), (1)

where σx,y are the Pauli matrices and the Rashba parameterα is determined by the asymmetry of
the potential confining the electrons in the two-dimensional x–y plane and can be controlled by
a gate voltage [3]. For the system we are considering, its value is about 10−12–10−11 eV m [24].
For a double FIS junction, where the current flows in the x direction, we can estimate the spin
dependence of the density of states and the resistance of the electron gas. According to the
Rashba term (1), the single-particle dispersion is

Eσ = h̄2k2
σ

2m∗ + σαkσ , (2)

where m∗ ≈ 0.04 me for the bare electron mass me and kσ = k + σ m∗α
h̄2 : σ is the spin–orbital

coupling label. This means that the electron spin s is no longer a good quantum number and the
spin–orbital-induced spin accumulation and the conditions for its observability have become
a matter of controversy [17, 18]. The Rashba spin–orbital interaction contributes a current
operator ĵso to the system:

ĵso,x = −eα

h̄
σy, ĵso,y = eα

h̄
σx . (3)

It has been shown that, in the diffusion region, the Rashba term contributes an α quadratic
term to increase the current or conductivity due to spin accumulation [18]:

jx = 〈 ĵx〉 = σxx E,

σxx = 2e2ρeτ

m∗ (1 + δN),
(4)

where δN = ( α
h̄vF

)2 with vF = kF
m∗ = h̄

m∗
√

2πρe the Fermi velocity. For a two-dimensional

electron gas on an InAs base, the electron density varies from ρe = 1011 to 1012 cm−2 in the
present existing samples and δN is of the order of 10−4 to 10−5. It is expected that the electron
density may increase to 109 cm−2 and δN ∼ 10−2. Even so, we can still neglect such a spin
accumulation and regard the original electron spin s as a good quantum number. However, in
this paper, we would like to look at another effect arising from the Rashba term. Notice that
equation (4) may yield a renormalization of the density of states at the Fermi surface:

N so
N = NN

F (1 + δN), (5)

where NN
F = L

2π
1

h̄vF
is the density of states at the Fermi surface of the semiconductor, which

is σ (or s)-independent [18, 25]. Thus, the spin polarized conductivity is also independent of
the spin [18]:

σ↑
xx = σ↓

xx ,

jx↑ = jx↓,
(6)

for σxx = σ +
xx + σ−

xx = σ
↑
xx + σ

↓
xx and jx = jx↑ + jx↓. Hence, for a single junction, the

Rashba precession does not affect the spin-dependent transport in the diffusion region except
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Figure 1. A sketch of the double FIS junction.

that the conductivity has a quadratic correction. For a double F/S/F junction, there may be the
influence of Rashba precession when the spin configurations of two ferromagnets lie either
parallel or anti-parallel [18]. For this aspect, more analysis is required. In the following,
however, we do not go into this issue and we will discuss another matter due to the co-
ordination between Rashba precession and the screened Coulomb interaction. We will see that
the magnetoresistance of the double FIS junction is very sensitive to the change in the charge
screening length, which is determined by the density of states. When δN is of the order of
10−2, there will arise a remarkable observed effect from the increase of the density of states
due to Rashba spin–orbital coupling.

3. Description of the junction

In the diffusion region and at room temperature, we consider the junction F1–I1–S–I2–F2
in the x direction. The thickness of the metal (F1, F2), the insulating barriers (I1, I2) and
the semiconductor (S) are denoted by LL,R, d1,2 and x0, respectively (see figure 1). For the
practical case, x0 is less than the spin diffusion length lN of the two-dimensional electron gas
in the semiconductor. The charge screening lengths in the metal and the semiconductor are
denoted by λL,R and λN, respectively. In our model, we assume λN 	 lN and λR,L 	 lR,L,
the spin diffusion lengths in the metal. Typically, λ ∼ 10−1 nm, l ∼ 101 nm and lN > 1 µm.
x0 ∼ 100 nm to 1 µm, depending on the structure of the junctions. The screening length in
the semiconductor, λN, is dependent on the doping of the semiconductor and can vary over a
wide range, say about 10 nm for the heavily doped semiconductor and 100 nm to 1 µm for the
lightly doped or undoped semiconductor. To avoid discussing the spin–orbit splitting of the
heavy and light hole bands near the zone centre, we consider the n-type semiconductor only.

The problem we would like to solve has been defined in [19, 20]. Briefly, it consists of
four sets of equations:

(1) The total charge–current conservation is described by

∇ · j = −∂ρ

∂ t
, (7)

where ρ is the charge density.
(2) According to our approximation, the electron spin is an approximately good quantum

number. The spin s-dependent current is determined by the diffusion equations. In order
to allow for an analytical analysis, we take a simple Hartree approximation into account to
see the space charge effect. Under such an approximation, the diffusion equations are [20]

js = σs(∇µs − ∇W0 + E), (8)

where the magnitude of the electric charge has been set as one, E is the external electric
field, the chemical potential µs is related to the charge density ρs by ∇µs = ∇ρs

Ns
, where

Ns is the spin-dependent density of states. W0 = ∫
d�r ′ Uint(�r − �r ′)ρ(�r ′) is the potential

caused by the screened Coulomb interaction Uint(�r) and ∇W0 is the so-called screening
field induced by Uint(�r).
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(3) The third is the magnetization relaxation equation where the magnetization density
M = ρ↑ − ρ↓ relaxes with a renormalized spin diffusion length l. In the relaxation
time approximation, one has

∇2 M − M/ l2 = 0. (9)

(4) The boundary conditions at the interfaces are given by

	µ̃s − 	W = r(1 − sγ ) js, (10)

where µ̃s = µs + Ex , Ex is the voltage drop on the left side of the barrier, 	W is the
electric potential drop across the barrier, which is assumed to be much smaller than 	µs ,
and rs = r(1 − sγ ) is the barrier resistance. We assume that there is no spin relaxation
in the insulator and that the spin-dependent currents are continuous across the junctions,
j L
s (−d1/2) = j N

s (d1/2) and j R
s (x0 + d2/2) = j N

s (x0 − d2/2). The resistance of the
insulator layer can then be estimated by the transmission probability of the barrier (see
below, equation (15)).

In addition, we have the neutrality condition for the total charges (QL,N,R, e.g. QN =∫ x0 +d1/2
d1/2 ρ dx) accumulated at the interfaces. By Gauss’s law, for the point d1/2 < x <

x0 + d1/2, i.e. inside the semiconductor, the potential W0 is determined by

∇W0(x) = 4π QL + 4π

∫ x

d1/2
ρ dx, (11)

whose constant part on the right-hand side gives the constraint on the charge while the x-
dependent part gives the function form of the potential W0. Another constraint is the neutrality
of the system:

QL + QN + QR = 0. (12)

With these sets of equations (equations (7)–(10)) and the two constraints on the charges
(equations (11) and (12)), the problem can be solved. The formal solutions of the problem are

ρL(x) = λL

lL
ρL

10e(x+d1/2)/λL +
λ2

L

l2
L

ρL
20e(x+d1/2)/lL ,

ML(x) = ML
0

(
1 − λ2

L

l2
L

)
e(x+d1/2)/lL ,

(13)

with similar solutions for the right-hand side. In the semiconductor, if λN 	 x0,

ρN(x) = ρ(1)(x) + ρ(2)(x),

ρ(1)(x) = λN

lN
ρ

(1)

10 e−(x−d1/2)/λN +
λ2

N

l2
N

ρ
(1)

20 e−(x−d1/2)/lN ,

ρ(2)(x) = λN

lN
ρ

(2)

10 e(x−x0 +d2/2)/λN +
λ2

N

l2
N

ρ
(2)

20 e(x−x0 +d2/2)/lN .

(14)

M (1),(2) can be obtained similarly. All of the coefficients in (13) and (14) can be determined
by using equations (7)–(10) and the constraints (11) and (12). The screening potential W0 is
determined by Gauss’s law. The total current is j = ∑

s js . Although js is not a constant, the
total current j is still a constant.
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4. The spin-dependent currents

It is necessary to simplify the problem to demonstrate the essential physics. One sets the
parameters of the metals and the barrier widths on the left and right sides to be the same:
λR = λL = λ, lL = lR = l, d1 = d2 = d and so on. The resistances of the barrier layers
are taken as r (1) = r (2) = r ; γ1 = γ2 = γ for the parallel configuration and γ1 = −γ2 = γ

for the anti-parallel configuration. To illustrate this, we focus on the calculation on the left
barrier located at x = 0. From the transmission probability through the barrier, the tunnelling
resistance is given by

r (1)
s = r(1 − γ s) = r0,s exp[d(κs(µ) − κs(0))], (15)

where κs(µ) ∝ ∫ d
0 dx [2m(U −	µs(0)x/d)]1/2, with U the barrier height. The current j L

s (x)

at x = 0 is dependent on the bias voltage and the interaction, which is given by

j L
s (0) = As j0s, (16)

where for the ferromagnetic metal on the left-hand side

As = 1 +
4πλ2

l

δ(β − s)

1 − δβ

ρL
10 + ML

0

E
. (17)

j0s = σs E is the current with no interaction and the current jso that is contributed from the
Rashba term has been neglected. β (δ) measures the spin asymmetry of the conductivities σs

(the densities of states at the Fermi surface Ns ): σs = σ
2 (1 + βs) and Ns = 1

2 NF(1 + sδ),

where NF is related to the screening length λ by 1
NF

= 2πλ2 1−δ2

1−δβ
. Noting that both ρL

10 and

ML
0 are proportional to the external electric field E , As is solely determined by the material

parameters.
Equation (16) implies that the spin-dependent current js(0) passing through the interface

differs by a factor As from the non-interacting current j0s(0). For the parallel configuration,
j0s(0) is given by [19]

j p
0s(0) ≈ V

Rso
N + 2r0,sYs(0)

, (18)

where Ys(0) = eκ0sd[ 2
3	µ̂s (0)

(1−(1−	µ̂s(0))3/2)−1] and Rso
N = RN(1 − βN) with βN ≈ δN. For the

anti-parallel configuration

j a
0s(0) ≈ V

Rso
N +

∑
s r0,s Ys(0)

. (19)

5. The magnetoresistance

Since the total current is constant everywhere, we have, for the parallel configuration
1

RP
= ∑

s js(0)/V and for the anti-parallel configuration 1
RAP

= ∑
s js(0)/V . From these, we

obtain the magnetoresistance ratio:

	R

R
≡ RAP − RP

(RAP + RP)
= X

2 + X
, (20)

where

X =
∑

s

AP
s (Rso

N +
∑

s ′ r0,s ′ Y AP
s ′ (0))

2(Rso
N + 2r0,sY P

s (0))
− 1.
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Figure 2. The magnetoresistance versus the bias voltage (in units of U ) with λN = 100 nm. The
junction parameters are x0 = 1.25 µm, λ = 0.1 nm, l = 20 nm and lN = 3 µm. Three different
values of δN are taken.

For non-interacting electrons, AP
+ = AP− = 1 and we know that 	R/R will not be beyond

a maximal value (at V → 0) of about 3.2% for r0+:r0−:RN = 1:2:1 and decays as the bias
voltage increases [19]. Since jso has been neglected, there is no observable Rashba effect
without interactions. After the interaction is included, the ratio (20) increases greatly and the
Rashba effect is enhanced as λN becomes smaller. To see this effect, we assume the electron
density is of the order of 109 cm−2 and δN ∼ 10−2. In this region, this effect from the Rashba
term can be clearly seen in figures 2 and 3. We take x0 = 1.25 µm,3 λ = 0.1 nm, l = 20 nm and
lN = 3 µm and set δ = β = 1/2. The different choices of δ and β will not qualitatively affect
the result if they do not deviate from 1/2too much. In figure 2, we depict the magnetoresistance
versus the bias voltage for λN = 100 nm with δN varying from 0 to 0.05. It is seen that 	R/R
increases from 16% to 18% when δN increases from 0 to 0.05. In figure 3, for λN = 50 nm, it is
shown that the Rashba effect increases much faster. 	R/R increases from 25% to 30% for δN

going from 0 to 0.05. Hence, we see a strong co-ordination between the Rashba spin–orbital
and screened Coulomb interactions in increasing the magnetoresistance. While the Coulomb
interaction largely enhances the magnetoresistance, the Rashba spin–orbital interaction may
enhance 	R/R. This kind of Rashba effect becomes more significant for a shorter charge
screening length. In figure 4, we depict the enhancement of 	R/R as δN. An almost linear
relation between the magnetoresistance and δN is found for given values of λN and U/V . The
slope is steeper as λN becomes shorter. Notice that, if we consider the electron density to be
1011 cm−2, this effect is still very small. Thus, to verify our prediction, the sample quantity
has to be improved in experiments.

3 For T ∼ 1 K, the mean free path of the two-dimensional electron gas may be of the order of 1 µm for GaAs with the
electron density 1010 cm−2. However, at room temperature, this mean free path may be lowered by one or two orders.
On the other hand, since the relevant electron density is 109 cm−2 in the present work and the electron mobility in
InAs is lower, the mean free path of the electron in our system is much shorter than 1 µm.
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Figure 3. The magnetoresistance versus the bias voltage with λN = 50 nm. Other parameters are
the same as those in figure 2.

Figure 4. The magnetoresistance versus δN with respect to U/V = 0.25.

6. Conclusions

We have shown the co-ordination between the Rashba spin–orbital and screened Coulomb
interactions on electron injection from a ferromagnet to a semiconductor in the diffusion region.
The magnetoresistance increases rapidly as the charge screened length in the semiconductor
becomes shorter. If the electron density in the sample is low enough, the Rashba term can also
enhance the magnetoresistance and plays a more important role when the Coulomb interaction
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is stronger. In fact, by a close examination of our solution, this Rashba effect corresponds to a
renormalization of the screening length λN → λ∗

N = λN/(1 + δN) in the dominant terms of the
solution. Because our solution is very sensitive to λN, it is understood why a small spin–orbital
coupling can cause a relative large increase in the magnetoresistance.
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